
Implications of the Methodological Choices for Hydrologic Portrayals of
Climate Change over the Contiguous United States: Statistically

Downscaled Forcing Data and Hydrologic Models

NAOKI MIZUKAMI,* MARTYN P. CLARK,* ETHAN D. GUTMANN,* PABLO A. MENDOZA,*
ANDREW J. NEWMAN,* BART NIJSSEN,1 BEN LIVNEH,#,11 LAUREN E. HAY,@

JEFFREY R. ARNOLD,& AND LEVI D. BREKKE**

*National Center for Atmospheric Research, Boulder, Colorado
1University of Washington, Seattle, Washington

# Cooperative Institute for Research in Environmental Sciences, University of

Colorado Boulder, Boulder, Colorado
@U.S. Geological Survey, Denver, Colorado

&U.S. Army Corps of Engineers, Seattle, Washington

**U.S. Bureau of Reclamation, Denver, Colorado
11Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado

(Manuscript received 1 October 2014, in final form 16 June 2015)

ABSTRACT

Continental-domain assessments of climate change impacts on water resources typically rely on statistically

downscaled climate model outputs to force hydrologic models at a finer spatial resolution. This study examines

the effects of four statistical downscaling methods [bias-corrected constructed analog (BCCA), bias-corrected

spatial disaggregation applied at daily (BCSDd) and monthly scales (BCSDm), and asynchronous regression

(AR)] on retrospective hydrologic simulations using three hydrologicmodels with their default parameters (the

Community Land Model, version 4.0; the Variable Infiltration Capacity model, version 4.1.2; and the

Precipitation–Runoff Modeling System, version 3.0.4) over the contiguous United States (CONUS). Biases of

hydrologic simulations forced by statistically downscaled climate data relative to the simulation with

observation-based gridded data are presented. Each statistical downscaling method produces different mete-

orological portrayals including precipitation amount, wet-day frequency, and the energy input (i.e., shortwave

radiation), and their interplay affects estimations of precipitation partitioning between evapotranspiration and

runoff, extreme runoff, and hydrologic states (i.e., snow and soil moisture). The analyses show that BCCA

underestimates annual precipitation by as much as 2250mm, leading to unreasonable hydrologic portrayals

over the CONUS for all models. Although the other three statistical downscaling methods produce a compa-

rable precipitation bias ranging from210 to 8mm across the CONUS, BCSDd severely overestimates the wet-

day fraction by up to 0.25, leading to different precipitation partitioning compared to the simulations with other

downscaled data. Overall, the choice of downscalingmethod contributes to less spread in runoff estimates (by a

factor of 1.5–3) than the choice of hydrologic model with use of the default parameters if BCCA is excluded.

1. Motivation and scope

Anumberofobservational studies have reported changes

in the timing and magnitude of seasonal streamflow pat-

terns across the contiguous United States (CONUS) that

may be due to a changing climate (e.g., Regonda et al. 2005;

Stewart et al. 2005; Déry et al. 2009; Luce andHolden 2009;

Fritze et al. 2011; Sagarika et al. 2014). Responding to the

observed hydroclimatic changes, water resource man-

agers are faced with the challenge to predict changes in

streamflow and other hydrologic components for long-

term water planning. Many hydrologic projections have

beenmade using uncoupled hydrologic simulations forced

by downscaled climate model outputs (e.g., Christensen

et al. 2004; Dettinger et al. 2004; Christensen and

Lettenmaier 2007; Hayhoe et al. 2007; Cayan et al. 2010;

Elsner et al. 2010; U.S. Bureau of Reclamation 2011;

Bennett et al. 2012; Sharma and Babel 2013).

Uncoupled, offline, or stand-alone hydrologic sim-

ulations, typically used to produce the hydrologic
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projections, refer to simulations in which the hydrologic

model is not interactively coupled to the atmospheric

model. In the course of implementing the uncoupled

simulations, modelers confront several methodological

choices. In addition to the choice of the global climate

models (GCMs) and emission scenarios, the spatial

downscaling method used to process the GCM outputs

and the hydrologic model configuration (e.g., model

structures and model parameters) are important sources

of uncertainty in the estimated hydrologic projections

(Mendoza et al. 2015a,b; Vano et al. 2014). This study

focuses on the latter two methodological choices.

Themain objectives of this study are to present 1) how

different downscaling methods propagate into different

hydrologic portrayals, such as the partitioning between

evapotranspiration (ET) and runoff, hydrologic states

(snowpack and soil moisture), and runoff characteristics

(e.g., high and low runoff); and 2) how sensitivity of

hydrologic simulation to choice of downscaling method

differs among hydrologic models with varying model

complexity. The scope of this study is toward continental-

domain hydrologic assessments. Therefore, this paper

focuses on statistical downscaling (SD) techniques that

have been used for the continental-scale assessments of

hydrologic projection. Furthermore, this study includes

four statistical downscaling methods used by Gutmann

et al. (2014), who evaluated differences in the downscaled

precipitation data, and three hydrologic models to eval-

uate interplays between two methodological choices.

The paper is organized as follows. To provide the

background of our study, section 2 describes methodo-

logical choices of spatial downscaling of climate model

output and the hydrologic models commonly used for

large-scale hydrologic assessments. Section 3 describes

the meteorological forcing data and hydrologic models

used for this study. Section 4 presents intercomparison

of statistically downscaled climate data and then exam-

ines how their differences in meteorological character-

istics affect hydrologic simulations with three hydrologic

models. Comparison of hydrologic simulations include

the partitioning of runoff and ET, hydrologic states

(snow water equivalent and soil moisture), and runoff

extremes. Finally, section 5 provides conclusions.

2. Background

a. Spatial downscaling approaches

Hydrologic processes are sensitive to local climate.

The effects of local climate variability such as topogra-

phy are not captured by GCM coarse resolutions

(typically .50km). Therefore, spatial downscaling is a

necessary step for hydrologic modeling that uses GCM

outputs. There are two main types of downscaling

methods: 1) dynamical downscaling where the GCM

output is used as boundary and initial conditions to

drive a regional climate model at a finer spatial resolu-

tion and 2) SD where statistical relations are developed

between the local climate variables and GCM output

and the relations are then subsequently used to obtain

the local meteorological variables from the GCM out-

put. Between dynamical and statistical downscaling

techniques, the SD method is an attractive choice for

large-scale hydrologic assessments because of its com-

putational efficiency. Also, the SD method corrects for

the bias contained in the surface meteorological fields

from GCMs, which is difficult to remove in dynamical

downscaling (Nicholas and Battisti 2012).

The computational efficiency of SD is crucial for

large-scale modeling projects because multiple GCMs

with several emission scenarios require repetitive down-

scaling of hundreds of GCM simulations. One such

practical application demonstrating the capability to

statistically downscale a large ensemble of climate

outputs at a continental scale is detailed in Brekke et al.

(2014), a work developed by a collaboration of federal

and nonfederal entities, including the U.S. Bureau of

Reclamation, U.S. Army Corps of Engineers, and

others (Maurer et al. 2014). The partners initially pro-

duced and served a 112-member ensemble of phase 3 of

the Coupled Model Intercomparison Project (CMIP3;

Meehl et al. 2005) climate projections statistically

downscaled to 1/88 over the CONUS (Maurer et al.

2007), subsequently translated into hydrologic pro-

jections over the western United States (U.S. Bureau of

Reclamation 2011). Similar efforts were then applied to

phase 5 of the CoupledModel Intercomparison Project

(CMIP5) climate projections (Taylor et al. 2012),

producing a 234-member ensemble of statistically

downscaled climate projections with a 97-member

subset translated into hydrology over the CONUS

(Maurer et al. 2014; Brekke et al. 2014).

Although many sophisticated SD techniques have

been developed, ranging from weather typing and neu-

ral networks to weather generators [see Wilby et al.

(2004) and Maraun et al. (2010) for further details], the

following rather simple techniques are widely used by

the water resources community for hydrologic assess-

ments (Maurer et al. 2010; U.S. Bureau of Reclamation

2011; Hanson et al. 2012; Miller et al. 2013; Hay et al.

2014):

d bias-corrected spatial disaggregation (BCSD; Wood

et al. 2004) is a method typically applied to monthly

values of precipitation and temperature, after which

temporal disaggregation is performed to generate
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daily time series (hereafter BCSDm). The BCSD

method has also been applied directly to daily GCM

output (BCSDd; Thrasher et al. 2012);
d bias-corrected constructed analog (BCCA; Maurer

et al. 2010); and
d asynchronous regression (AR; Dettinger et al. 2004;

Stoner et al. 2013).

These methods broadly consist of bias correction and

spatial disaggregation processes, and Table 1 describes

procedures of each SD method in detail. While some

communities might refer to these methods as bias cor-

rection techniques, the water resources community, for

whom this is most relevant, has traditionally referred to

them as SD methods; as such, we retain that naming

scheme for the remainder of this paper.

Gutmann et al. (2014) evaluated the four SD tech-

niques documented in Table 1 in terms of how they re-

produce historical precipitation amounts and key

hydrologically relevant attributes, including wet-day

fraction, dry (wet) spell length, and precipitation ex-

tremes. They showed that each SD method produces

different portrayals of the hydrologically relevant at-

tributes as well as precipitation amounts. Accurate

portrayals of such hydrologically relevant attributes of

downscaled climate data are important when other

types of meteorological forcing variables, such as radia-

tion fluxes and humidity, need to be estimated for process-

based hydrologic models. To date, the SD techniques

reviewed here are typically applied to precipitation and

temperature, but not to other meteorological variables

required for hydrologic models, though some more so-

phisticated techniques have been used to downscale all

the surfacemeteorological variables at a daily step (Wilby

et al. 1998). A common method to obtain downscaled

radiative and humidity data from precipitation and tem-

perature data is to use an empirical algorithm such as the

Mountain Microclimate Simulation Model (MTCLIM;

Hungerford et al. 1989; Kimball et al. 1997; Thornton and

Running 1999; Bohn et al. 2013) in conjunction with the

hydrologically relevant attributes derived from down-

scaled temperature and precipitation. Although precipi-

tation is the primary driver of the hydrological cycle,

several studies have illustrated the impact of other cli-

mate forcing data, including radiative fluxes, humidity,

and wind speed on the hydrologic simulations (e.g.,

Nasonova et al. 2011; Haddeland et al. 2012; Feld et al.

2013; Pierce et al. 2013; Wayand et al. 2013; Mizukami et

al. 2014). Among these variables, errors in shortwave

radiation may have the largest impact on hydrologic

simulations. Mizukami et al. (2014) showed that large

differences between two shortwave radiation estimates—

one from climate model reanalysis data and one esti-

mated using MTCLIM with observed temperature and

precipitation data—can be the main source of difference

in runoff estimates (timing and magnitude) in snowmelt-

dominated areas.

The sensitivity of hydrologic simulations to down-

scaling methods has been examined by many studies for

specific basins or regions (e.g., Wilby et al. 2000; Crane

et al. 2002; Hay and Clark 2003; Wood et al. 2004;

Maurer et al. 2010; Teutschbein et al. 2011). Most of the

studies present a comparison between dynamical and

statistical approaches for hydrologic model applications.

For example, Wood et al. (2004) illustrated that hydro-

logic responses obtained with BCSDmwere comparable

to the results from use of dynamic downscaling tech-

niques over the Colorado River basin and the Pacific

Northwest. Other studies (e.g., Wilby et al. 2000; Hay

and Clark 2003) also confirmed that simpler statistical

methods are comparable to computationally expensive

dynamical methods in terms of runoff simulations.

Given numerous statistical methods developed in recent

years, more studies have turned attention to the impact

TABLE 1. Statistical downscaling techniques.

SD methods Descriptions of the procedures Reference

BCCA Perform quantile mapping of raw climate model output to spatially aggregated observation-

based grid outputs for bias correction, then on a given day select 30 historical analog days

based on spatial similarity from coarsened observed grids to develop a linear model that

produces the coarse model grid. Finally, apply the developed linear model to finer-resolution

historical observation grids to produce downscaled dataset.

Maurer et al. (2010)

BCSDm Perform a quantile mapping of raw climate model output to spatially aggregated observation-

based grid outputs for bias correction and then use a linear interpolation for spatial disag-

gregation of bias-corrected climate model output. This process is performed with monthly

values. Temporal disaggregation is performed by scaling downscaled monthly values to

match historical monthly values (month is randomly selected from the historical period).

Wood et al. (2004)

BCSDd The same as BCSDm except using daily time step and no temporal disaggregation. Thrasher et al. (2012)

AR Perform a bilinear interpolation of raw climate model output to finer resolution and then de-

velop a linear regression between ordered observations and spatially disaggregated climate

model output for each month.

Dettinger et al. (2004);

Stoner et al. (2013)
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of SD choice on hydrologic simulations (e.g., Maurer

et al. 2010; Teutschbein et al. 2011). However, those

studies on SDmethod impact on hydrologic simulations

are based on the use of a single hydrologic model.

b. Hydrologic modeling

The choice of hydrologicmodel can have an impact on

the uncertainty of hydrologic assessments. The un-

certainty resulting from the choice of hydrologic model

originates mainly from differences in hydrologic model

structures (i.e., a set of governing equations representing

hydrologic processes, spatial representations of the

snow and/or soil column, and land cover) and model

parameters (Clark et al. 2015a,b). More recent climate

change impact studies usemultiple hydrologic models to

generate ensemble simulations and evaluate the impact

of model choice on hydrologic estimates (e.g., Bastola

et al. 2011; Najafi et al. 2011; Poulin et al. 2011; Miller

et al. 2012; Surfleet et al. 2012; Vano et al. 2012;

Exbrayat et al. 2014; Mendoza et al. 2015a,b). For ex-

ample, Najafi et al. (2011) performed multiple hydro-

logic simulations with four hydrologic models of varying

complexity forced by a combination of eight GCMs and

two emission scenarios in a catchment in Oregon,

showing overall larger hydrologic model uncertainty

during the low-flow period. These studies highlight the

need for multimodel approaches when projecting water

availability and uncertainty under climate change. Vano

et al. (2012) compared five hydrologic or land surface

models with their default parameters to assess the sen-

sitivity of runoff to changes in temperature and pre-

cipitation over the Colorado River basin. They found

runoff sensitivity to precipitation change, as expressed

by elasticity (a ratio of percent change in annual runoff

to percent change in annual precipitation), ranges ap-

proximately from 2 to 6 at Lees Ferry among the models

examined. They illustrated not only differences in the

modeled water balance but also hydrologic sensitivity to

climate change due to the model choice. Mendoza et al.

(2015a) further examined how interplay between the

choice of hydrologic model and their model parameters

affects assessment of climate change impact on runoff

using four hydrologic models over three Colorado

headwater basins. The intermodel differences in the

estimated runoff changes can be reduced if each model

is calibrated compared to the use of the default model

parameters, but still remain larger than climate change

signals (i.e., runoff changes due to climate change).

3. Forcing data and hydrologic models

This section describes procedures of hydrologic

modeling, including climate forcing data or SD

datasets, selected hydrologic models, their model pa-

rameters, and spinup method to determine initial hy-

drologic states.

a. Climate datasets

We use four instances of daily precipitation P and

maximum and minimum air temperature (Tmax and

Tmin, respectively) statistically downscaled to a 1/88 grid
(;12-km spatial resolution). The SD techniques con-

sidered are BCCA, BCSDd, BCSDm, and AR, which

were also evaluated by Gutmann et al. (2014). Coarse-

resolution climate data from the National Centers for

Environmental Prediction–National Center for Atmo-

spheric Research (NCEP–NCAR) reanalyses (Kalnay

et al. 1996; ;1.98 Gaussian grid equivalent to ;210 km)

was downscaled to 1/88 resolution over the CONUS. The

observation-based gridded climate dataset also at 1/88
resolution developed by Maurer et al. (2002, hereafter

M02) was used to train each downscaling method for the

period 1979–99 and then to generate downscaled pre-

cipitation and temperature data for the same period.

M02 has been used for many studies on hydrologic im-

pact of climate change (e.g., Christensen et al. 2004;

Hayhoe et al. 2004; Maurer 2007; Brekke et al. 2014).

Four SD datasets and the M02 dataset were used as

forcing datasets for the hydrologic models described in

section 3b.

For each SD dataset and M02, meteorological forcing

variables in addition to precipitation and air tempera-

ture (i.e., specific humidity, surface pressure, short- and

longwave radiation, and wind) required for the offline

hydrologic simulations are generated as follows. Deri-

vations of daily short- and longwave radiation and hu-

midity use MTCLIM, version 4.3 (Thornton et al. 2000),

in which theoretical daily extraterrestrial insolation is

reduced by daily transmittance estimated empirically

with diurnal temperature range (DTR) and humidity,

and then with a further 25% reduction applied on a day

with precipitation (Thornton and Running 1999).

Dewpoint temperature is also empirically estimated as a

function of Tmin and P (Kimball et al. 1997). Since daily

shortwave radiation and humidity are interrelated in the

algorithm (i.e., shortwave radiation is a function of vapor

pressure, and vapor pressure is a function of shortwave

radiation), both variables were iteratively derived in the

MTCLIM algorithm. Estimation of longwave radiation

uses an empirical equation developed by Idso (1981) that

uses air temperature and vapor pressure to estimate at-

mospheric emissivity. Surface pressure was computed by

adjusting the standard sea level temperature and pressure

(288K and 1013.25kPa, respectively) with a hydrostatic

equation at gridbox elevation. Wind speed for all the

datasets is taken from the 2.58 3 2.58 NCEP–NCAR
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reanalyses (Kalnay et al. 1996), which is linearly in-

terpolated to the 1/88 grid.
Since model simulations are performed at hourly time

steps, temporal disaggregation was made for each daily

variable. Daily precipitation values are uniformly dis-

tributed throughout the day, and temperature is dis-

aggregated using spline interpolation of the daily

maximum and minimum values. Daily total shortwave

radiation is disaggregated using the temporal pattern of

solar zenith angle for each calendar day. Daily dewpoint

is linearly disaggregated between successive days and

then converted to specific humidity with subdaily tem-

perature estimates. Surface pressure and wind speed

were assumed to be constant throughout the day.

Errors in the phase of precipitation (rain vs snow) can

have a large impact on hydrologic simulations, especially

over mountain ranges in maritime climate (e.g., Sierra

Nevada) in the transient snow zone (Mizukami et al.

2013). For this study, the precipitation type was de-

termined based on air temperature for all the models. All

the models use consistent threshold temperatures for

snow (08C), below which all the precipitation falls as

snow, and for rain (28C), abovewhich all the precipitation
is rain. These threshold temperature values are within

observed precipitation type transition temperatures ob-

served in past studies (e.g., Dai 2008). Between two

temperature thresholds, a linear interpolation is used to

estimate the percentages of each precipitation type.

b. Hydrologic model simulations

Hydrologic simulations were performed over the

CONUS using three hydrologic models: 1) the Commu-

nity LandModel, version 4.0 (CLM4; Oleson et al. 2010);

2) the Variable Infiltration Capacity model, version 4.1.2

(VIC), with energy balance mode (Liang et al. 1994,

1996); and 3) the Precipitation–RunoffModeling System,

version 3.0.4 (PRMS; Leavesley et al. 1983; Leavesley

and Stannard 1995). All the models explicitly simulate

moisture fluxes (base flow, surface flow, canopy and soil

evaporation, and transpiration) and states (soil moisture

and snowpack), which are evaluated in this study.

CLM is a land component of the Community Earth

System Model (CESM; Hurrell et al. 2013), which has

contributed to various global climate change studies

such as CMIP5 (Taylor et al. 2012). As a part of CESM,

CLM is typically coupled with atmospheric and ocean

models to simulate land–atmosphere–ocean interac-

tions, but this study uses offline CLM simulation to focus

only on land water and energy processes driven by the

meteorological forcings (Lawrence et al. 2011). VIC and

PRMS are typically run in an offline mode (i.e., un-

coupled to a climate model). VIC has been extensively

used for many hydrologic climate assessments over the

CONUS, such as climate change (e.g., Christensen and

Lettenmaier 2007; U.S. Bureau of Reclamation 2011;

Brekke et al. 2014) and drought monitoring (Sheffield

et al. 2004, 2012). PRMS has been used to assess the

hydrologic response of different emission scenarios for

the twenty-first century in selected basins from different

hydroclimatic regions across the United States (Hay

et al. 2011). Some examples of hydroclimate studies with

PRMS include the effects of scale on hydrology

(Battaglin et al. 2011), trends in snowfall and ground-

water recharge (Bjerklie et al. 2011), impacts on the

growing season (Christiansen et al. 2011), effects of

baseline conditions (Koczot et al. 2011), changes in

spring snowpack (Mastin et al. 2011), statistical com-

parisons of watershed-scale response (Risley et al.

2011), hydrologic effects of urbanization and climate

change (Viger et al. 2011), and impacts on the 1.5-yr

flood flow (Walker et al. 2011). For this study, these

three models were run with identical spatial resolution

(i.e., 1/88 resolution) at hourly time steps (except PRMS,

which uses a daily time step).

Brief descriptions of the hydrologic process repre-

sentations used in eachmodel are given in Table 2. Also,

Fig. 1 depicts differences in models’ spatial representa-

tion of vegetation, snowpack, and subsurface. For ex-

ample, CLM and VIC use layer structures (15 soil layers

and unconfined aquifer for CLM and 3 layers for VIC)

while PRMS uses conceptual reservoirs for subsurface

soil structure. The horizontal vegetation representation

is similar between VIC and CLM and vegetation root

depth is prescribed per vegetation tile for both models,

but PRMS uses average vegetation representation and

thus vegetation parameters.

To evaluate the hydrologic simulations affected by

bias of precipitation and temperature solely due to SD

techniques, model simulations are conducted for the

19-yr period from the beginning of water year (WY)

1980 through the end of WY 1999 (the water year starts

on 1 October and ends on 30 September of the following

year). This model simulation period is the same as the

training period used for SD methods. Gutmann et al.

(2014) showed that the NCEP–NCAR data contain

large changes in precipitation between the periods of

WYs 1980–99 (SD calibration period) andWYs 2000–08

(SD validation period) over the eastern part of the

CONUS, which are not seen in M02 data, potentially

dominating precipitation error patterns over the SD

validation period.

1) MODEL SPINUP

The model spinup is an important part of the model-

ing procedure to obtain equilibrium hydrologic states

(soil moisture storage, etc.). The models were initialized
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with each SD dataset by cycling through the first 10-yr

period (WYs 1980–90) five times with the respective SD

datasets. Themodel spinup time is dependent onmodels

(Cosgrove et al. 2003). For example, CLM has the un-

confined aquifer and requires the longest spinup time to

reach equilibrium for water-table depth and water

storage in an unconfined aquifer, particularly in dry

areas such as the southwestern United States. To re-

duce the spinup time for CLM, we developed an em-

pirical linear relation between annualmean precipitation

(WYs 1979–2008) and soil moisture states (water table

and soil moisture) after 145 year simulations over the

UCO region (see Fig. 2 for explanation of region acro-

nyms) with the M02 dataset (five cycles of WYs 1979–

2008) to obtain the initial estimates of soil moisture states

prior to the CLM spinup simulations. The analysis ex-

cludes the first water year to further preclude spinup

effects.

2) MODEL PARAMETERS

This study used the default model parameter fields

(CLM and PRMS) and partially calibrated parameters

(VIC) obtained from previous modeling efforts as de-

scribed in the following subsections. Calibration of the

model parameters was not performed in this study

despite its potential reduction of intermodel spread of

hydrologic simulations as demonstrated by Mendoza

et al. (2015a). There were two primary reasons why the

models were not calibrated:

1) There are no well-established methods to calibrate

the parameters fields consistently across a large scale

(i.e., CONUS). Basin-by-basin calibration done by

the previous large-scale studies (Hay et al. 2011;

Livneh and Lettenmaier 2012; Sheffield et al. 2012;

Xia et al. 2012; Brekke et al. 2014) faces unresolved

issues on spatial transferability of the parameters

calibrated for selected basins to ungauged basins.

2) A traditional calibration optimizes the parameters

given calibration forcing data; therefore, calibrated

parameters with particular forcing data are not

necessarily optimal for other forcing data with dif-

ferent SD methods. This was illustrated by Elsner

et al. (2014).

Moreover, this study replicates current practices of

continental-scale hydrologic assessments such as recent

CMIP3 and CMIP5 hydrologic projection assessments

by the U.S. Bureau of Reclamation (U.S. Bureau of

Reclamation 2011; Brekke et al. 2014), who used the

best available model parameter fields. In both CMIP

FIG. 1. Comparison of process conceptualizations across models: CLM, VIC, and PRMS.
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hydrologic projection assessments with VIC, the cali-

brations of many VIC soil parameters, particularly the

parameters related to conceptual hydrologic process

representation, were performed for selected basins

across the CONUS (with a focus on the western United

States); therefore, it is noted that there is discontinuity

of the spatial parameter fields at basin boundaries.

(i) CLM

CLM characterizes the land surface within a grid box

by fractions of five different land covers (vegetation,

wetland, lake, glacier, and urban), and vegetated cover

was further split into 16 possible vegetation and/or forest

types, referred to as plant functional types (PFTs; see

Fig. 1). Vegetation structures [e.g., leaf area index

(LAI), stem area index, and canopy top and bottom

heights], canopy optical properties (e.g., reflectance

and transmittance), and aerodynamic properties (e.g.,

roughness length and displacement height) are pre-

defined for each PFT (Oleson et al. 2010). Water and

energy fluxes are computed for each PFT and the

fluxes from and to a grid box are computed by taking

the area-weighted average over all PFTs. The PFT

distribution used for this study is based on a global

0.58 PFT grid developed by Lawrence and Chase

(2007). Oleson et al. (2010) provides complete details

on land surface, subsurface, and snow hydrology

parameterizations.

(ii) VIC

Asingle set of soil parameters related to hydraulic and

thermal properties were uniquely assigned to each grid

box, while the representation of land cover uses multiple

tiles inside a grid box to characterize heterogeneity of

land cover; therefore, each tile has unique vegetation

parameters such as LAI. VIC soil and vegetation pa-

rameters were provided by phase 2 of the North

American Land Data Assimilation (NLDAS-2; Xia

et al. 2012). As in the CMIP5 hydrologic projection as-

sessments, the VIC parameters used in NLDAS-2 were

calibrated for selected river basins inconsistently across

the CONUS domain. However, the VIC soil parameter

set is one of the latest CONUS-wide fields available for

the CONUS-domain VIC simulations.

(iii) PRMS

The PRMS simulations used the spatially distributed

parameters that were recently developed by the U.S.

Geological Survey (USGS), namely, the USGS Geo-

spatial Fabric (Viger 2014). This geospatial dataset in-

cludes the default parameters for each USGS

Hydrologic Response Unit (HRU) over the CONUS.

The USGS HRU parameters were area-weighted aver-

aged to 1/88 grid box.

4. Results and discussion

This section presents comparisons of the meteoro-

logical forcing data, including four SD data and M02,

and hydrologic simulations produced with three models

forced by each climate dataset. In total, there are 15 sets

of the hydrologic simulations from the combinations of

three models and five forcing datasets (four downscaled

forcing datasets and M02). In this section, a simulation

based on a particular combination of the model and

forcing data is indicated as model forcing; for example,

CLM-M02 indicates a simulation based on CLM forced

with M02 data. For clarity, the following terminologies

are also used to indicate a particular intercomparison.

Intermodel difference refers to the difference in the

hydrologic simulations due to different models but

forced by the same dataset. Interforcing difference in-

dicates comparison of the hydrologic simulations among

different climate datasets. The term bias indicates dif-

ference in the forcing variables and associated simula-

tions between SDmethods andM02. Last, Fig. 2 shows a

FIG. 2. Map of CONUS with 18 HUC regions.
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CONUS map with hydrologic unit codes (HUCs) re-

gions, which are referred to throughout this section.

a. Comparison of statistically downscaled forcing
data

Although all the SD methods used in this paper per-

form bias correction of coarse-resolution climate data

(i.e., NCEP–NCAR reanalyses) in a similar manner, as

described in Table 1, unique downscaling processes for

each SD method produce different biases in the down-

scaled precipitation data. Figure 3 displays annual total

precipitation and annual mean daily temperature (i.e.,

Tmin and Tmax) of M02 (Fig. 3a) and biases of the

downscaled dataset for each SDmethod (Figs. 3b–e). As

shown in Fig. 3, BCCA-downscaled precipitation se-

verely underestimates the mean annual precipitation

across the CONUS by a large amount (mean bias over

the CONUS 5 2250mmyr21). One of the reasons for

the large dry bias is that the method tends to smooth out

and decrease large precipitation events (Gutmann et al.

2014; Pierce et al. 2014). BCCA-downscaled pre-

cipitation is a linear combination of fine-resolution

precipitation fields on 30 historical analog days se-

lected based on the domainwide root-mean-square dif-

ferences (Table 1). Therefore, a coarse climate model

precipitation field that has a heavy precipitation in one

area but is clear in another area can be matched to an-

alog days that have low precipitation in both areas

(Pierce et al. 2014). As a result, selected analog days

tend to have smoother spatial patterns, contributing to a

decrease of larger precipitation events. The dry bias of

BCCA appears to increase as the domain size increases

based on two studies (Maurer et al. 2010; Gutmann et al.

2014). BCSDd, BCSDm, and AR have a much smaller

CONUS average bias of 8, 3, and 210mmyr21, re-

spectively. For daily temperature data, both Tmin and

Tmax biases are less than 0.18C for all the SD methods

over the CONUS except BCSDm, which produced bias

in Tmin and Tmax as large as 0.78 and 20.58C, re-

spectively. Although BCCA produces a severe low bias

in precipitation, the bias in BCCA-downscaled tem-

perature is comparable to the other SDmethods. One of

the reasons for this reasonable bias pattern in BCCA

temperature would be that temperature fields generally

have much smoother spatial patterns than precipitation.

We further examine the effects of different SD

methods on key hydrologically relevant attributes de-

rived from the downscaled precipitation and tempera-

ture data. These attributes include wet-day fraction,

defined as fraction of days with precipitation greater

than a certain threshold, and DTR. Bias in wet-day

fraction impacts precipitation intensity (Gutmann et al.

2014), which further affects infiltration and canopy in-

terception of precipitation. Both attributes also directly

influence the other forcing variables (i.e., humidity and

downwelling radiation) through MTCLIM. Figure 4 il-

lustrates how those two hydrologically relevant attri-

butes affect shortwave radiation estimates. BCCA and

BCSDd produce a much higher wet-day fraction com-

pared to the M02 dataset across the CONUS. Both SD

methods produced over 10.25 of mean bias over the

CONUS. BCSDm and AR produce less bias than

BCCA and BCSDd (within 60.1 bias across the

CONUS). DTR biases in the SD temperature data are

shown in Fig. 4 (middle). Biases of Tmin and Tmax (see

Fig. 3, middle and right) directly affect DTR biases. For

example, BCCA and BCSDd produced consistent

spatial patterns in biases of Tmin and Tmax across the

CONUS, resulting in small DTR bias. However,

BCSDm produced a relatively large underestimate

over the CONUS (CONUS mean bias: 20.38C) due to

warm bias of Tmin and cool bias of Tmax. AR produced

small positive bias in DTR, especially over the MR

region (see the region in Fig. 2) where cool bias of Tmin

and warm bias of Tmax are seen.

The annual shortwave radiation bias is shown in Fig. 4

(right). The biases in wet-day fraction and DTR help

explain the shortwave radiation error. In this case, the

signs of both biases in wet-day fraction and DTR en-

hance the error of shortwave radiation for all the SD

datasets. Clearly, severe overestimation of wet-day

fraction in BCCA and BCSDd cause an un-

derestimation of shortwave radiation over the CONUS,

excluding the Southwest. On the other hand, negative

and positive biases in shortwave radiation in BCSDm

and AR, respectively, result from both biases of wet-day

fraction and DTR.

We further explore which attribute (wet-day frac-

tion or DTR) affects shortwave radiation estimates

more. In MTCLIM [see Thornton et al. (2000) for

more details on the algorithms], daily shortwave ra-

diation is computed as the product of three daily

variables: theoretical top-of-the atmosphere radiation

Rpot, cloud-free transmittance Trt,max, and cloudy-sky

transmittance Trf,max. Of those three variables, Trf,max

is a function of DTR and wet-day fraction, and Trt,max

is weakly related to DTR. The daily cloudy-sky

transmittance is given by

Tr
f ,max

5

�
1:02 0:9 exp[2B(DTR1:5)] P5 0 (mm)
f1:02 0:9 exp[2B(DTR1:5)]g0:75 P. 0 (mm)

, (1)
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FIG. 3. (a) Annual mean values of P, Tmin, and Tmax from M02 and (b)–(e) bias for the four SD methods relative to M02.
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whereB is a parameter with a function of 30-day trailing

average of DTR. Figure 5 shows Trt,max as a function of

DTR indicated by black solid lines, along with the sen-

sitivity to errors in DTR (colored dashed lines) for wet

(P. 0mm) and not wet (P5 0mm) days. The higher the

DTR value is, the less sensitive Trt,max becomes.

Therefore, accuracy in shortwave radiation estimated

withMTCLIM is less affected byDTR bias in areas with

FIG. 4. (a) Annual mean values of wet-day (WD) fraction, DTR, and shortwave radiation (SW) fromM02 and (b)–(e) bias for the four SD

methods relative to M02. Red (blue) in WD fraction and DTR indicates their biases contribute to positive (negative) bias in SW.
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the highest DTR (e.g., southwestern United States; see

Fig. 4), and consequently, the error in the wet-day

fraction is of greater importance. These results in-

dicate that SD methods require accuracy of pre-

cipitation frequency as well as the amount if the

downscaled climate data are input into the process-

based hydrologic models that compute full energy bal-

ance, because errors in wet-day fraction propagate into

shortwave radiation estimates with MTCLIM, which

can greatly impact snowmelt rates and ET (Mizukami

et al. 2014).

b. Comparison of hydrologic simulations

This section discusses the effect of model and SD

choices on the annual water balance (precipitation

partitioning between ET and runoff), characteristics of

extreme runoff, and dynamics of hydrologic states (i.e.,

snowpack and soil moisture). Finally, intermodel and

inter-SD forcing differences in the simulations are

quantified in terms of annual runoff to provide insight

into which choices are likely to have more impact on the

hydrologic simulations.

1) PRECIPITATION PARTITIONING INTO ET AND

RUNOFF

Biases in SD forcing data via the four SDmethods are

expected to uniquely propagate into biases in the hy-

drologic simulations. Figure 6 shows the mean annual

runoff andET estimatedwith the threemodels forced by

M02 (Fig. 6a), as well as the difference (i.e., bias) com-

pared to M02 for each of the SD datasets (Figs. 6b–e).

The spatial patterns in runoff bias are generally in op-

posite sign of ET bias pattern for each simulation, except

for the simulations forced by BCCA data. Large

underestimations of ET and runoff in BCCA simula-

tions (note the different color scale than the other SDs)

are predominantly caused by the large underestimation

of BCCA precipitation. The greatest underestimation of

ET is seen in the Great Plains (MR, ARK, GUL, and

LM). The greatest runoff underestimation is seen over

the eastern United States and in the mountainous

western coastal region (e.g., Sierra Nevada and Cascade

ranges of CA and PN), where ET is generally energy

limited.

More obvious intermodel differences appear for the

simulations forced by BCSDd. Even with considerable

reduction of shortwave radiation in BCSDd in many

regions (Fig. 4) in the midwestern plains (i.e., UM, OH,

TN, and LM), VIC and PRMS overestimate ET while

CLM does not. Moreover, the magnitude of the ET

overestimations from VIC and PRMS is larger than

precipitation overestimations over those regions. This

occurs because VIC and PRMS produce large positive

bias in canopy evaporation (not shown). Both VIC and

PRMS store more of the rainfall as canopy in-

terception, which evaporates more freely than water

that enters the soil column. Key hydrologically relevant

attributes that play a role in canopy evaporation here

are both biases of wet-day fraction and precipitation

amount. BCSDd results in more precipitation days or

high wet-day fraction with relatively small pre-

cipitation bias, leading to a lower precipitation in-

tensity [see extreme event section in Gutmann et al.

(2014)]. A larger fraction of the less intense pre-

cipitation is effectively intercepted by the canopy,

leading to increased canopy evaporation. Although the

wet day fraction in BCCA is as high as that in BCSDd

and both SD methods produce low intensity pre-

cipitation (i.e., drizzle), less precipitation is intercepted

by the canopy because of a much larger underestimation

of precipitation amount, resulting in less canopy evap-

oration. Both VIC and PRMS produce less transpiration

because of less water that infiltrates into the soil as well

as the reduction of shortwave radiation. For CLM, the

increase of canopy ET does not compensate for the re-

duction of transpiration; therefore, total ET is reduced.

This interesting intermodel difference in ET bias for

BCSDd is seen only over the midwestern regions be-

cause of denser forest cover than the interior regions

such as UCO, LCO, and GB.

For the simulations with BCSDm and AR datasets,

which produce less bias of wet-day fraction than

BCSDd, it appears that ET bias is caused by biases of

precipitation amount or shortwave radiation. When

models are forced with BCSDm, they overestimate ET

in the eastern United States where slight overestimation

of annual precipitation is seen. On the other hand, small

FIG. 5. Cloudy-sky transmittance as a function of DTR (thick

black line) and its sensitivity to DTR bias indicated by colored

dashed lines for precipitation and nonprecipitation days.
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ET increases in the simulations forced by AR, as seen in

the eastern United States, are due to a slight positive

error in shortwave radiation.

Figure 7 shows the spatial distributions of intermodel

differences in the mean annual runoff for M02 and each

SD forcing dataset. The spatial patterns of intermodel

difference in ETmirrors the runoff difference pattern (not

shown here). The spatial patterns of intermodel differ-

ences in annual water balance are fairly consistent across

all the forcing data but BCCA. Two striking features are

seen in Fig. 7. First, larger and more uniform intermodel

differences are seen in the eastern part of CONUS than

the western part, where large differences are concentrated

in high-elevation areas. Second, it is interesting to note that

over the midwestern regions (SA, OH, TN, UM, LM, and

eastern parts ofMRandAR), the sign of theCLM–PRMS

difference for BCCA was opposite to those for the other

forcings while CLM–VIC and VIC–PRMS comparisons

are consistent with all the forcing data. The order of in-

creasing magnitude in the annual runoff simulations is

PRMS. CLM.VIC over the midwestern regions when

the models were forced by BCCA but CLM . PRMS .
VIC for the other forcing data. Note BCCAhas the largest

underestimation of precipitation compared to the other

forcing data (Fig. 3), leading to the lowest runoff with the

use of any models. However, the reduction of simulated

runoff from CLM-BCCA relative to CLM with the other

forcing data was much larger than VIC and PRMS as

shown in interforcing difference (see runoff in Fig. 6b).

This is why CLM-BCCA produced less runoff than

PRMS-BCCA over the midwestern regions.

2) EXTREME RUNOFF

Estimations of extreme runoff values are crucial formany

water management problems. For instance, high runoff

FIG. 6. (a) Values of downscaled annualP and simulated water balance (ET and runoff) for threemodels forced byM02 and (b)–(e) bias

for three models forced by the four SD methods relative to M02. Note that the biases range between 2200 and 200mm for BCCA and

2100 and 100mm for the other SDs.
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estimates are associated with flood events, whereas low

runoff estimates are associated with hydrological drought.

Of importance is that the changes in extreme runoff may

not be necessarily the same as the changes in total annual

runoff presented in the previous section.

For high runoff analysis, 20-yr peak runoff (RO20yr)

was estimated at each grid cell for all the model simu-

lations. The RO20yr was computed by fitting a log-

Pearson type 3 distribution to a 19-yr record of annual

peak daily values and then selecting the runoff value at

FIG. 7. Spatial distribution of intermodel differences in mean annual runoff for the four SD methods and M02.
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5% exceedance probability. Low runoff analysis used

the 7-day, 10-yr annual low runoff (7RO10) since this is

widely used in low-flow frequency analysis in the United

States. To estimate 7RO10, the minimum values of

7-day mean runoff are first computed for each WY, and

then the runoff value at 90% exceedance probability

was estimated from log-Pearson type 3 distribution fit-

ted to 19-yr records of the annual lowest runoff values.

Differences in biases of extreme flows due to different

SD methods are illustrated in Fig. 8 as spatial distribu-

tions and in Fig. 9 as scatterplots. First, for both high-

and low-flow estimates, CLM and VIC produce less bias

in the interior part of the CONUS (e.g., MR, AR, RIO,

UCO, LCO, and GB) than the other parts of the

CONUS for all the SD forcings. For the high-flow esti-

mates, spatial bias patterns are similar between CLM

and VIC for each SD forcing data (Fig. 8), in which

underestimation is concentrated in southern regions

(eastern ARK, LM, and TN). However, CLM produces

larger scatter in RO20yr, indicating that larger bias exists

for each SD dataset than VIC (Fig. 9). On the other

hand, PRMS produced even larger biases (Fig. 9) that

extend across the CONUS (Fig. 8). For low-flow bias,

there are noticeable intermodel differences in spatial

bias patterns. Larger biases are seen in the eastern part

of CONUS and in the PN region, particularly

from PRMS.

Figure 10 shows intermodel comparisons of high and

low runoff estimated from the model simulations

forced by M02 dataset. Figure 10 also includes com-

parison of daily mean runoff estimates. Contrary to the

mean runoff comparison, there are very large inter-

model differences in high and low runoff, indicating

quite a large difference in temporal runoff patterns or

runoff distribution at a daily step among the models.

This could be due to differences in the soil hydrology

parameterizations (i.e., percolation, infiltration, and

runoff generation) among the models, and parameter

FIG. 8. (a) Values of RO20yr and 7RO10 for three models forced by M02 and (b)–(e) bias for three models forced by the four SDmethods

relative to M02.
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values are also likely to play a role in temporal flow

distribution, which was indicated by Nijssen et al.

(2003). Little correlation of low runoff estimates

among three models implies little agreement of base

flow among the three models. High extremes are

better correlated than low extremes, despite large

systematic intermodel differences. The possible ex-

planations of such completely different intermodel

correspondence between high and low runoff are

given as follows. High runoff is more dependent on

precipitation and snowmelt, which are more directly

dictated by the meteorological forcings common

among the hydrologic models. On the other hand,

low runoff, which originates from base flow, depends

on soil and vegetation processes, which are differ-

ently described by the model parameterizations and

associated parameter values.

3) HYDROLOGIC STATES

Examination of the temporal dynamics of some hy-

drologic state variables, such as snow water equivalent

(SWE) and soil moisture, can help diagnose differences

in runoff generation as a result of different methodo-

logical choices. This section presents the differences in

the selected key attributes of seasonal snowpack and soil

moisture dynamics.

(i) Seasonal snowpack

Errors in simulated snow accumulation and ablation

can affect seasonal runoff and ET patterns, particularly

over the western United States. Climatological seasonal

snow patterns were examined with respect to two met-

rics: the peak amount of SWE and the centroid day of

SWE time series for a water year (SWECT) to infer

FIG. 9. Scatterplot of extreme runoff [(left) RO20yr and (right) 7RO10] between four SD forcings andM02. Color bar indicates number of

occurrences in a 2D bin (bin width is 2mm for RO20yr and 0.01mm for 7RO10).
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timing of peak SWE. Variable SWECT is computed us-

ing (Stewart et al. 2005)

SWE
CT

5
�day[SWE(day)]

�SWE(day)
. (2)

Figure 11 compares biases of peak SWE (Fig. 11, top)

and SWECT (Fig. 11, bottom) for three models forced

by each SD dataset. To construct a cumulative distri-

bution function of biases over the CONUS shown in

Fig. 11, the grid boxes where 19-yr climatological peak

SWE is over 50mm are selected. For peak SWE, all the

FIG. 10. Intermodel comparison of (top) RO20yr, (middle) 7RO10, and (bottom)meanRO between (left) CLM andVIC, (center) CLM

and PRMS, and (right) VIC and PRMS. The forcing data are fromM02. Color bar indicates number of occurrences in a 2D bin (bin width

is 2mm for RO20yr and 0.01mm for 7RO10).
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SD forcing datasets generally produced an un-

derestimation in all the hydrologic models. The order

of the bias magnitude is generally preserved among

the models. The causes of peak SWE underestima-

tions depend on SD forcing datasets. For instance, the

BCCA simulations produced the least snow accumu-

lation because of severe precipitation underestima-

tion while the AR simulations produced negative

SWE bias, possibly because of the large bias of in-

coming shortwave radiation. The biases from BCSDm

simulations are the smallest possibly because of the

least underestimation of precipitation, particularly

over the western United States and negative bias in

shortwave radiation. VIC produces relatively consis-

tent peak SWE bias pattern across all the SD forcing

data compared to the other two models. For bias of

SWECT, all the models forced by SD forcings pro-

duced within 15 days of bias over the CONUS.

However, VIC-BCCA and VIC-BCSDd produced

positive bias of SWECT for 75% of the total examined

grid boxes, indicating later peak SWE timing com-

pared to M02.

Figure 12 shows intermodel differences of peak

SWE and SWECT for all the forcing data, indicating

much larger differences than interforcing differences

or bias (cf. Fig. 11). Since all models use the same

method to partition precipitation into rain and snow,

the intermodel differences in peak SWE occur be-

cause each model produces different snow ablation

processes (sublimation and snowmelt). Such dissimi-

larity can stem from discrepancies in model parame-

terizations of canopy interception and sublimation,

radiative transfer through canopy, within- and below-

canopy turbulence, albedo decay computation and

storage, and transmission of liquid water through the

snowpack.

FIG. 11. Cumulative distribution of error in 19-yr mean annual (top) peak SWE and (bottom) SWE centroid over the CONUS for (left)

CLM, (middle) VIC, and (right) PRMS. Pixels below 50mm of 28-yr mean peak SWE are removed for the CDF construction.
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(ii) Soil moisture

Soil moisture dynamics are characterized by an auto-

correlation of daily soilmoisture series. This analysis used

the e-folding time of the daily soil moisture autocorrela-

tion as a measure of soil moisture persistence (Delworth

andManabe 1988). The e-folding time is the lag for which

the autocorrelation falls below 1/e. The larger the

e-folding time is, the larger the soil moisture memory is.

In hydrologic models, autocorrelation of soil moisture de-

pends on soil storage, which differs substantially among

the models. The analysis in this paper uses total column

soil moisture in all the soil storages from which surface

flow and base flow are generated. Figure 13 shows the

e-folding time from the M02 simulation and its bias for

each model. Figure 14 shows intermodel differences in

soil moisture memory from M02 simulations. CLM and

VIC have similar soil representations (i.e., layer structure),

but CLM has much more memory than VIC, possibly

because base flow is generated from an unconfined aquifer

that can hold large (4800mm at maximum) soil moisture

(see Fig. 1). PRMS, which uses reservoirs as soil moisture

storage, has the least soil moisture memory. The other

factors that affect soil moisture memory are soil hydraulic

parameters in the model that affect percolation rate and

baseflow rate. These characteristics of soil moisture

memory are consistent with runoff characteristics. For

example, CLM, which has the largest stored soil moisture

and soil moisture memory, produces the least runoff,

particularly low runoff, while the least soil moisture

memory in PRMS is related to the largest runoff. Since

soil moisture depth is much more influenced by model

soil representation, there are large intermodel differences

as shown in Fig. 14.

4) INTERMODEL DIFFERENCE VERSUS

INTERFORCING DIFFERENCE

Finally, to examine which of the methodological

choices—the choice of models or SD—contributes more

to the spread between the hydrologic simulations, we

use the multimodel analysis approach used in past

studies (Dirmeyer et al. 2006; Xia et al. 2012). The

analysis involves the use of similarity measures to

quantify the spread of ensemble simulations generated

from multiple hydrologic models or multiple down-

scaled forcing datasets.

For this analysis, the spread of multiple simulations is

defined as Rfactor
std , where Rstd denotes a ratio of two

standard deviations and factor identifies the source of an

ensemble. Here, the ensemble is formed by collection of

multiple models (N 5 3) or multiple SD forcing data

FIG. 12. Cumulative distribution of intermodel differences in 28-yr mean annual (top) peak SWE and (bottom) SWE centroid over

theCONUS for (from left to right) BCCA,BCSDd, BCSDm,AR, andM02. Pixels below 50mmof 28-yrmean peak SWEare removed for

the CDF construction.
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FIG. 13. (a) Value of e-folding decay days of total column soil moisture autocorrelation for threemodels forced byM02 and (b)–(e) bias for

three models forced by the four SD methods relative to M02.
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(N 5 4). First, the mean and standard deviation of the

ensemble of a particular variable X is computed at each

time step t (i.e., monthly step) asXt and st, respectively,

and then temporal mean s of st is computed with

s5
1

M
�
M

t51

s
t
, (3)

where M is total number of months from October 1980

through September 1999 (i.e., 228 months). Next, the

temporal standard deviation of the ensemble mean stotal

is computed as

s
total

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M
�
M

t51

(X
t
2X)2

s
(4)

and

X5
1

M
�
M

t51
�
N

n51

X
n,t
, (5)

whereXn,t is a variable of nth member at time t. Finally,

the spread index Rfactor
std is given by

Rfactor
std 5

s

s
total

. (6)

The larger the value of Rfactor
std is, the larger the ensemble

spread is. Taking the hydrologic model and SD forcing

data as a factor of ensemble variability of the hydrologic

simulations,Rmodel
std andR

forcing
std are computedwith Eq. (6)

for the monthly runoff anomalies for each individual

grid box to examine spatial patterns of intermodel (or

forcing) spread. Monthly anomaly time series were used

to remove the seasonality of intermodel (or interforcing

data) variability.

Figure 15a shows the R
forcing
std histogram for each

model. Since BCCA simulations appear to be an outlier

(i.e., severe underestimations of all the water fluxes),

R
forcing
std values with and without BCCA were computed.

In Fig. 15a, the solid (dashed) line indicates R
forcing
std

computed without (with) BCCA. Figure 15b displays a

histogram containing occurrences of Rmodel
std of the

monthly runoff anomaly for each SD dataset as well as

M02 over the CONUS. Overall, the BCCA-forced

simulations produce the largest magnitudes of Rmodel
std .

Compared to Rmodel
std , R

forcing
std or the interforcing spread

FIG. 14. Intermodel comparison of e-folding decay days of soil moisture autocorrelation for the different forcing data. Color code indicates

log10 of the number of pixels that fall in x- and y-axis bins.
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over the CONUS is quite consistent across the three

models if BCCA is excluded. However, inclusion of

BCCA in forcing ensembles increases the spread of

runoff simulation for all the models, and the magnitude

of spread becomesmore inconsistent among themodels.

The spatial variability of R
forcing
std is much smaller than

forRmodel
std as indicated by tight histograms ofR

forcing
std . The

distributions of Rmodel
std are characterized as bimodal,

which are caused by a large Rmodel
std region (Rmodel

std . 0.6)

over the Intermountain West and low Rmodel
std region

(Rmodel
std ’ 0.3) over the Great Plains through the

Southeast (spatial distribution not shown here).

This analysis suggests that model choice is likely to

produce more variability than the choice of SDmethods

for runoff, especially when BCCA is not included.

However, this disparity has to be interpreted with cau-

tion because the analysis is based on a small sample of

hydrologic models and SD methods. Therefore, the

conservative conclusion drawn from this analysis is specific

to models and forcing data used in this study. In addition,

and more importantly, it is likely that the magnitude of

intermodel differences is expected to be affected by hy-

drologic parameter estimates. As previously mentioned,

Mendoza et al. (2015a) demonstrated that the spread of

the runoff simulations among calibrated hydrologic

models is substantially less than that among uncalibrated

models based on three Colorado headwater basins.

5. Conclusions

Offline hydrologic simulations forced by SD global

climate model output have become the practical method

of choice for continental-scale hydrologic assessments.

However, uncertainty in hydrologic simulations (e.g.,

runoff estimation) that comes solely from the choice of

downscaling methods and hydrologic model has been

FIG. 15. Histograms of (a) interforcing spread index and (b) intermodel spread index of

monthly runoff over the CONUS.
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relatively unexplored relative to other uncertainty sources,

such as the selection of emission scenarios andGCMs. The

main goal of this study was to examine how differences in

precipitation and temperature, derived by SD methods

commonly used for practical application, propagate into

hydrologic simulations and to assess the relative impor-

tance of both model choice and downscaling method

choice. The following conclusions are summarized.

d Severe underestimation of precipitation from BCCA

produces considerably different hydrologic portrayals

than the other SD data examined in this paper.
d It is important to reproduce hydrologically relevant

attributes (e.g., wet-day fraction, and diurnal temper-

ature range) as well as precipitation amount or air

temperature via SD. This paper showed that BCSDd,

which has a much higher wet-day fraction, produced

lower precipitation intensity and shortwave radiation

than BCSDm and AR. Bias in those attributes affects

evaporation processes differently among the models.

Biases in the hydrologically relevant attributes caused

by downscaling process are also propagated into

estimations of other types of meteorological forcings

(e.g., shortwave radiation) by empirical algorithm

(e.g., MTCLIM).
d If BCCA is not considered, sensitivity of runoff

estimates to choice of SD methods is by a factor of

1.5–3 smaller than the impacts of the hydrologic model

choice. The discrepancy of particular hydrologic as-

sessments (e.g., extreme runoff estimations, especially

low runoff values) due to model choice becomes even

greater than choice of SD methods.

The above conclusions on methodological choice impacts

may be limited to historical hydrologic fidelity. Our cur-

rent effort is to evaluate how the methodological choices

affect projected hydrologic changes over the CONUS.

Characteristics of differences in projected climate changes

(i.e., temperature increase and precipitation changes)

among the SD methods can be different than those of

portrayal of historical climate conditions. Projected hy-

drologic changes are affected by how differently each SD

method projects climate changes.

Finally, although this study does not intend to char-

acterize the whole uncertainty range associated with

choices of SDmethods and hydrologic model choice, the

results presented in this paper highlight that hydrologic

assessments are more sensitive to choices of hydrologic

models than SD method choices, especially if model

parameters are not calibrated. To more fully charac-

terize and understand uncertainty of hydrologic assess-

ments from offline hydrologic modeling, the following

research efforts are needed: 1) implementation of im-

proved downscaling methods (Wilby et al. 2004; Maraun

et al. 2010), 2) development of spatially consistent

parameter estimations for continental-scale domains

(Samaniego et al. 2010), and 3) analysis of more

complete intermodel structural effect on hydrologic

simulations (Clark et al. 2015a,b). Those efforts are

expected to improve our understanding of uncertainty

associated with hydrologic modeling and ultimately

facilitate reduction of hydrologic uncertainty.
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